翻訳と辞書 |
Strictly positive measure : ウィキペディア英語版 | Strictly positive measure
In mathematics, strict positivity is a concept in measure theory. Intuitively, a strictly positive measure is one that is "nowhere zero", or that it is zero "only on points". ==Definition== Let (''X'', ''T'') be a Hausdorff topological space and let Σ be a σ-algebra on ''X'' that contains the topology ''T'' (so that every open set is a measurable set, and Σ is at least as fine as the Borel σ-algebra on ''X''). Then a measure ''μ'' on (''X'', Σ) is called strictly positive if every non-empty open subset of ''X'' has strictly positive measure. In more condensed notation, ''μ'' is strictly positive if and only if :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Strictly positive measure」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|